摘要

多智能体深度确定性策略梯度(multi-agent deep deterministic policy gradient,MADDPG)算法是深度强化学习方法在多智能体系统(multi-agent system,MAS)领域的重要运用,为提升算法性能,提出基于并行优先经验回放机制的MADDPG算法。分析算法框架及训练方法,针对算法集中式训练、分布式执行的特点,采用并行方法完成经验回放池数据采样,并在采样过程中引入优先回放机制,实现经验数据并行流动、数据处理模型并行工作、经验数据优先回放。分别在OpenAI多智能体对抗、合作两类典型环境中,从训练轮数、训练时间两个维度对改进算法进行了对比验证,结果表明,并行优先经验回放机制的引入使得算法性能提升明显。

  • 单位
    中国人民解放军装甲兵工程学院