摘要
采用BP神经网络和逐步线性回归两种模型,以2014—2017年汕头市金平环境监测子站的6种污染物质量浓度以及同期汕头市国家基准气象观测站37类地面气象观测数据为预报因子,对该站O3最大8 h质量浓度进行预测。结果表明:两种预报模型在历史数据拟合效果上并不存在明显差异,总体上冬春季的模型拟合度高于夏秋季。在2017年7和12月2个独立样本的预报效果检验中,BP网络模型预报准确指数(d)分别比回归模型高10.4%和0.8%;BP网络模型预报级别准确率(TS)分别比回归模型高12.9%和3.3%。BP网络模型无论在预报精度还是预报稳定度上均明显优于回归模型。夏秋季降水因子的影响常导致BP模型预报值出现正误差,冬春季冷空气南下的影响常导致BP模型预报出现负误差。
- 单位