基于局部协同与竞争变异的动态多种群粒子群算法

作者:孙欣; 于慧; 王宇嘉*; 林炜星; 梁海娜; 陈万芬
来源:计算技术与自动化, 2021, 40(03): 94-100.
DOI:10.16339/j.cnki.jsjsyzdh.202103017

摘要

针对粒子群算法在处理复杂优化问题时,出现多样性较差、收敛精度低等问题,提出了基于局部协同与竞争变异的动态多种群粒子群算法(Dynamic Multi-population Particle Swarm Optimization Based on Local Cooperative and Competitive Mutation, LC-DMPPSO)。LC-DMPPSO算法设计了一种局部协同的方法,该方法划分种群成多个子种群,划分后的子种群再通过非支配排序、差分变异的方法选择出一对领导粒子。同时,对粒子的更新方法进行改进,让各个目标优化更加均衡,增强LC-DMPPSO算法的局部搜索能力,提高收敛精度。在LC-DMPPSO算法中,为了防止出现"早熟"收敛的情况,引入竞争变异来增加种群多样性。最后,通过选择一系列标准测试函数将LC-DMPPSO算法与3种进化算法进行比较,验证所提算法的有效性。实验结果显示,所提算法的多样性和收敛性比其他3种进化算法更好,优化效果更佳。

全文