摘要

针对1 030组混凝土抗压强度试验数据,通过天牛须搜寻算法(BAS)来训练多层神经网络(MLP),并与混合复杂进化方法(SCE)?MLP、多元宇宙优化算法(MVO)?MLP这2种耦合模型算法进行对比分析,得到可用于预测混凝土抗压强度的算法模型.结果表明:BAS可以显著提高MLP的训练精度和预测精度,该算法比SCE?MLP、MVO?MLP耦合模型算法更快、更准确;与人工神经网络(ANN)和支持向量机(SVM)个体学习算法相比,元启发式算法在混凝土抗压强度预测方便表现出良好的优越性.同时讨论了BAS?MLP模型中与训练数据集数量和输入变量数量相关的因素,发现使用1 030组数据的80%即可获得良好的预测结果 .

  • 单位
    武汉理工大学; 长江勘测规划设计研究有限责任公司; 华杰工程咨询有限公司; 土木工程与建筑学院