为了解决不同识别环境下光照强度的变化对手势识别准确率影响的问题,提出了基于ResNet-50残差网络的改进Faster R-CNN手势识别算法。相较于普通的Faster R-CNN算法,该算法用了ResNet-50网络,提高网络特征的学习能力,并在ResNet-50中加入了实例批处理标准化(IBN)方法用于对单个图片的表征内容学习,适应不同的识别环境。实验结果表明,该算法在测试集上的识别率高达98.7%,相较于常用手势识别算法,有效性更高,鲁棒性更好。