摘要
提出一种基于红外图像温度分布特征和BP神经网络(BPNN,back-propagation neural networks)的绝缘子串低零值故障和污秽故障识别方法。首先利用图像处理技术分割提取绝缘子串红外图像中钢帽和盘面目标区域,得到对应温度数据;之后引入K-means聚类算法剔除分割目标区域中背景像素温度数据的干扰,并计算每个分割区域温度平均值,形成反映绝缘子运行状态的钢帽和盘面温度特征向量;在此基础上,建立以温度特征向量为输入的BPNN模型,实现绝缘子串低零值故障和污秽故障的识别及故障定位。最后通过将模型应用于某500 k V变电站绝缘子串故障诊断,验证所提出方法的准确性。
-
单位广东电网有限责任公司; 华南理工大学