摘要

为解决容积卡尔曼滤波器对机动目标跟踪过程中因模型不准确出现的加速度跟踪超调问题,对消隐记忆滤波和平方根滤波理论进行了研究,提出了一种消隐记忆因子改进的平方根容积卡尔曼滤波算法(Memory Attenuation Square-root Cubature Kalman Filter,MASCKF)。首先推导了基于线性状态方程的简化平方根容积卡尔曼滤波算法,提高了算法的实时性;其次在简化算法的时间更新环节引入消隐记忆因子,提高新量测数据在最优估计中的比重,使得加速度跟踪超调得到了很好的抑制。通过实验比对,验证了新算法对加速度跟踪超调的抑制效果,提高了对目标跟踪的实时有效性和准确性。

  • 单位
    中国人民解放军陆军工程大学