摘要

主轴轴承作为机床关键零部件,针对轴承故障信息比较复杂难以获取,并且故障数据样本少问题,提出了基于小波包混合特征和支持向量机(SVM)的数控机床轴承故障诊断方法。首先对轴承振动信号进行小波包分解和重构,提取信号的混合特征构建联合特征空间;然后使用t-分布式随机邻域嵌入法对样本数据进行降维,观测混合特征样本集的数据分布;最后使用非线性SVM进行故障分类。经过现场数控机床数据验证,对主轴轴承内圈、外圈和滚珠的故障识别的准确率为100%,与线性SVM以及BP神经网络的故障分类效果来比较,该方法能更加精准地识别出了数控机床主轴轴承故障。

  • 单位
    成都飞机工业(集团)有限责任公司; 成都飞机工业(集团)有限责任公司