摘要

随着计算机三维视觉的广泛应用,近几年基于深度学习的点云处理算法得到了大量研究,而耗时耗存储的缺陷较大程度限制了其在移动端的部署应用。基于改进损失函数的总体思路,提出了一种新的点云深度模型压缩框架,将知识蒸馏方法引入二值量化模型中,同时考虑点云聚合操作的特殊性引入了辅助损失项,改进的损失函数共包括预测损失项、蒸馏损失项和辅助损失项三部分。实验结果表明,和已有算法相比,所提算法可以获取更高的精度,同时对当前点云主流深度网络模型也具有良好的扩展性。