摘要
针对轴承故障信号受噪声影响严重,导致故障特征提取稳定性较差的问题,将小波变换、相关性、奇异值分解和信息熵理论相结合,提出一种基于相关性小波奇异熵的轴承故障特征提取方法。该方法首先将轴承信号进行小波分解,利用小波分解系数和噪声的相关性特点不同,引入相关计算以去除噪声的影响;然后对相关处理后的规范化系数进行奇异值分解,轴承的不同故障信息就体现在奇异值中;再利用信息熵的统计特性对奇异值进行不确定度计算;最后,以相关性小波奇异熵作为特征向量,通过概率神经网络对滚动轴承故障进行识别。实验表明:该方法能够有效地提取轴承故障特征,具有良好的容噪能力和稳定性。
- 单位