摘要

影响燃气负荷变化的因素呈现非线性和随机性特征,单一数值算法很难进行精确预测。为了提高燃气负荷预测的准确度,使预测算法具备更好的适应性,提出了一种基于多元线性回归与BP神经网络的短期燃气负荷预测模型。该混合优化算法兼顾了多元线性回归算法的非线性特性和BP神经网络的泛化特性。以宁夏平罗县2011年城市居民燃气用气量为研究算例,应用灰色关联度对燃气负荷及影响因素进行相关性分析,并采用均方根误差及R2判定系数作为预测模型性能评价方法。通过仿真,验证了所建立模型是可行且有效的。相比单一的多元线性回归方法或BP算法,采用混合算法所建立预测模型具有更好的适应性,预测误差更小。