摘要

针对基本蚁群算法在二维静态栅格地图下进行移动机器人路径规划时出现的搜索效率低下、收敛速度缓慢、局部最优解等问题,提出一种自适应机制改进蚁群算法,用于移动机器人在二维栅格地图下的路径规划.首先采用伪随机状态转移规则进行路径选择,定义一种动态选择因子以自适应更新选择比例,引入距离参数计算转移概率,提高算法的全局搜索能力以及搜索效率;然后基于最大最小蚂蚁模型和精英蚂蚁模型,提出一种奖励惩罚机制更新信息素增量,提高算法收敛速度;最后定义一种信息素自适应挥发因子,限制信息素浓度的上下限,提高算法全局性的同时提高算法的收敛速度.在不同规格的二维静态栅格地图下进行移动机器人全局路径规划对比实验,实验结果表明自适应机制改进蚁群算法具有较快的收敛速度,搜索效率明显提高且具有较好的全局搜索能力,验证了所提算法的实用性和优越性.

全文