摘要
人体动作识别(HAR)是智慧医疗、体育训练、视频监控等众多领域的技术基础,受到社会各界的广泛关注。本文概述了HAR的研究进展及意义,将其归纳为动作捕捉和基于深度学习的动作分类两个过程。首先,详细介绍了基于视频、基于深度相机以及基于惯性传感器的三种主流动作捕捉方式,列举了常用的动作数据集。其次,从特征自动提取及多模态特征融合两方面来描述基于深度学习的HAR,并介绍了正骨康复训练中如何通过HAR实现监督锻炼和模拟训练。最后,讨论了HAR的精准动作捕捉、多模态特征融合方法,以及在正骨康复训练应用中的重点和难点。本文通过总结以上内容旨在快速地引导研究人员了解HAR的研究现状及其在正骨康复训练中的应用。
- 单位