摘要
受多种因素影响,水文时间序列具有非平稳性。研究时间序列的传统模型如ARMA对数据的平稳性有较高要求,不适用于非平稳水文时间序列的研究。近年来,机器学习算法越来越多地被应用于研究水文过程,本文将支持向量机回归(SVR)和贝叶斯岭回归(BRR)应用于月降水量的预测。运用小波变换对降水数据进行分解和重构,然后对各子序列进行相空间重构,运用校验数据从SVR和BRR中选取每个子序列上精度更高的模型,构建耦合支持向量机回归和贝叶斯岭回归的BRR-SVR优化模型,并与单一的BRR模型和SVR模型加以对比。以北京站、南京站和太湖流域7个雨量站为例,采用确定系数、平均绝对百分比误差和平均绝对误差3项指标评估各模型的预测性能,以相对误差图探讨三类模型之间的差异,计算结果验证优化模型的有效性。
- 单位