摘要

为了解决设计面向点云数据的神经网络需要大量人工介入的问题,提出了基于注意力机制和点卷积的神经网络架构搜索方法。首先,针对不同尺度点云的信息融合问题,提出了一种基于注意力机制的多尺度融合模块。其次,针对点云的处理效率问题,设计了基于点卷积的特征提取模块作为候选操作,并与多尺度融合模块组成搜索单元。将多个搜索单元叠加成的神经网络作为搜索空间,并采用基于可微分神经网络架构搜索算法搜索出最优神经网络。在公开点云数据集ModelNet上的实验结果证明,该方法得到的神经网络具有领先的精度,同时具有较少的可学习参数,并且该方法大幅减少了人工介入的工作量。在该数据集上的消融实验结果表明,在基线模型中加入提出的基于注意力机制的多尺度融合模块,精度提升了1.1%。