针对矿山人员安全帽佩戴检测问题,文中提出了一种基于人脸的身份识别及安全帽佩戴检测的违规行为识别方法。首先在视频图像中检测人脸以识别身份,然后运用卷积神经网络方法检测人员是否佩戴安全帽,实验阶段将此方法与传统的图像处理方法进行测试对比。实验结果显示,基于深度学习的安全帽检测方法的鲁棒性强于传统方法,在不同条件下识别率和运行效率均优于传统方法,深度学习方法的平均识别率高达97%,所需平均运行时间少于传统方法的1/7。