摘要

为了充分利用监督信息指导聚类过程,提出自适应半监督邻域聚类算法(adaptive semi-supervised neighborhood clustering algorithm, SSCAN)。引入监督矩阵与距离度量结合,构造合理的相似矩阵;充分利用监督信息,通过标签信息矩阵与流形正则项结合调整模型,改善聚类效果。在多种数据集进行试验,并与其他聚类算法作对比,结果表明,SSCAN可以充分利用监督信息,提高聚类的准确率。