摘要
提出了一种基于Kendall等级相关改进的同步算法IRC(inverse rank correlation).Kendall等级相关是非线性动力学分析的一般化算法,可有效地度量变量间的非线性相关性.复杂网络的研究已逐渐深入到社会科学的各个领域,脑网络的研究已经成为当今脑功能研究的热点.利用改进的IRC算法,基于脑电EEG(electroencephalogram)数据来构建大脑功能性网络.对构建的脑功能网络的度指标进行了分析,以调查癫痫脑功能网络是否异于正常人.结果显示:使用该改进的算法能够对癫痫和正常脑功能网络显著区分,且只需要记录很短的脑电数据.实验结果数据表明,该方法适用于区分癫痫和正常脑组织网络度指标,它可有助于进一步地加深对大脑的神经动力学行为的研究,并为临床诊断提供有效工具.
- 单位