摘要

为了提高网络入侵检测的性能,提出一种基于半监督学习的网络入侵检测系统SSIDS-CV。系统由网络嗅探器、训练集生成器和半监督分类器三部分组成。通过对无标记入侵数据进行伪标记,将伪标记后的样本加入到有标记数据集中,参与交叉验证,选取能使分类器误差最小的标记作为最终的标记,扩充有标记数据数目,训练入侵检测分类器。使用KDD Cup 99数据集模拟半监督入侵检测过程,实验结果表明SSIDS-CV能有效地挖掘未标记入侵数据信息,具有较高的入侵检测率。