摘要

目的尺度突变是目标跟踪中一项极具挑战性的任务,短时间内目标的尺度发生突变会导致跟踪要素丢失,使得跟踪误差积累导致跟踪漂移,为了更好地解决这一问题,提出了一种先检测后跟踪的自适应尺度突变的跟踪算法(kernelized correlation filteryou only look once,KCFYOLO)。方法在跟踪的训练阶段使用相关滤波跟踪器实现快速跟踪,在检测阶段使用YOLO (you only look once) V3神经网络,并设计了自适应的模板更新策略,采用将检测到的物体的相似度与目标模板的颜色特征和图像指纹特征融合后的相似度进行对比的方法,判断目标是否发生遮挡,据此决定是否在当前帧更新目标模板。结果为证明本文方法的有效性在OTB(object tracking benchmark)2015数据集中具有尺度突变代表性的11个视频序列上进行试验,试验视频序列目标尺度变化为0.1~9.2倍,结果表明本文方法平均跟踪精度为0.955,平均跟踪速度为36帧/s,与经典尺度自适应跟踪算法比较,精度平均提高31.74%。结论本文使用相关滤波和神经网络在目标跟踪过程中先检测后跟踪的思想,提高了算法对目标跟踪过程中尺度突变情况的适应能力,实验结果验证了加入检测策略对后续目标尺度发生突变导致跟踪漂移的情况起到了很好的纠正作用,以及自适应模板更新策略的有效性。