摘要
为了改进车道偏离预警系统的工作效能,本文提出了考虑人-车-路特性的无意识车道偏离识别方法。首先,明确了无意识车道偏离识别的具体含义,将其划分为疲劳车道偏离和次任务车道偏离;其次,利用受试者工作特性曲线(ROC)确定无意识车道偏离的识别时间窗口,保证了无意识偏离样本筛选的有效性;再次,以12名驾驶人为试验对象,采集并对比分析了驾驶员操纵特性、车辆运动状态和车辆与车道线相对运动状态等相关参数,并分别选取作为疲劳车道偏离和次任务车道偏离识别基本特征;最后,采用高斯混合隐马尔科夫模型(GM-HMM)构建无意识车道偏离识别模型。实验结果表明,本文方法具有较好的识别效果。
-
单位汽车仿真与控制国家重点实验室; 吉林大学