摘要
目前林业害虫检测研究多数基于传统机器学习算法,且存在精度低、效果差的问题。对此,提出了一种基于深度学习模型YOLOv4的林业害虫检测模型——Pest-YOLOv4。采用K-means++算法聚类先验框,提高了先验框avg-IoU值。将ECA(Efficient Channel Attention)和CBAM(Convolutional Block Attention Module)结合,构成ECA-CBAM注意力机制,使网络更多关注有利于林业害虫检测的特征信息。重新组织网络颈部,构成SPP-PANet,融合多重感受野捕获的特征信息。利用Focal Loss思想改进损失函数,在平衡正负样本比例的同时关注难区分样本的学习。实验结果表明,Pest-YOLOv4林业害虫检测模型mAP达到90.4%,相较于YOLOv4提高4.2%,FPS保持在33.4 f/s,满足林业害虫检测任务的检测精度与实时性要求。
- 单位