摘要

【目的】通过无人机获取沙糖橘果园的遥感图像,快速提取果树分布位置,为果树的长势监测和产量预估提供参考。【方法】以无人机拍摄的可见光遥感图像为研究对象,计算超红指数、超绿指数、超蓝指数、可见光波段差异植被指数、红绿比指数和蓝绿比指数6种可见光植被指数,使用双峰阈值法选取阈值进行果树的提取。在使用光谱指数进行识别的基础上,结合数字表面模型作为识别模型的输入变量,进行对比试验。【结果】相比使用单一光谱指数,结合数字表面模型提高了果树和非果树像元的提取精度,6次波段融合后的总体精度均大于97%。超红指数与数字表面模型结合后的总体精度最高,为98.77%,Kappa系数为0.956 7,植被信息提取精度优于其他5种可见光植被指数与数字表面模型结合后的提取精度。【结论】数字表面模型结合可见光植被指数的提取方法能够更深层次地挖掘遥感数据蕴含的信息量,为影像中色调相似地物的提取提供参考。