摘要

针对太阳能电池片缺陷数据量匮乏造成的网络过拟合和模型性能不达标的问题,提出基于深度卷积对抗生成网络和图像随机拼接的真假数据融合算法,将训练数据量提升了800倍;同时对网络模型进行轻量化优化,减少模型训练参数。实验结果表明,经过真假数据融合扩充数据集后训练的模型测试精度相比原始训练集和传统数据增强算法分别提升了近30%和17%;轻量化处理后的模型参数减少为之前的1/2,对每张图片的测试时间由57 ms缩短到22 ms。研究证明,真假数据融合算法能够有效的缓解训练数据不足造成网络过拟合问题;轻量化优化模型在保证精度的同时,压缩模型大小,加快测试速度。

全文