摘要
不同形式的机械损伤对蓖麻种子发芽生长和榨油后的蓖麻油质量影响不同,因此对产生机械损伤的蓖麻种子进行识别分类非常重要。提出了基于卷积神经网络的蓖麻种子损伤分类算法。以种壳缺失、裂纹和完整蓖麻种子(无损伤)的分类为例,构建了蓖麻种子训练集和测试集,搭建2个卷积层(每个卷积层8个卷积核)、2个池化层和1个全连接层(128个节点),实现分类。为提高分类的准确性和实时性,调整网络结构以及优化批量尺寸参数,得到较优的网络结构和批量尺寸;利用上下左右翻转扩充样本,改变优化器、学习率以及正则化系数对该网络进行组合试验,获得准确率及效率较优的组合。通过Dropout优化减小卷积神经网络模型的过拟合。试验结果表明:卷积层为5层、池化层为5层、批量尺寸为32时,该网络模型平均测试准确率为92.52%。在组合试验中,Sgdm优化器更新网络可以提高网络的分类性能;数据扩增可以增加样本的多样性,减小过拟合现象;通过Dropout优化卷积神经网络模型的过拟合;选择学习率为0.01,正则化系数为0.000 5时,模型分类准确率达到94.82%,其中种壳缺失蓖麻种子准确率为95.60%,裂纹蓖麻种子准确率为93.33%,完整蓖麻种子准确率为95.51%,平均检测单粒蓖麻种子的时间为0.143 5 s。最后,开发蓖麻种子损伤分类系统,验证结果为:种壳缺失蓖麻种子的准确率为96.67%,裂纹蓖麻种子的准确率为80.00%,完整蓖麻种子的准确率为86.67%。该卷积神经网络模型在损伤蓖麻种子分类时具有较高的识别准确率,可在蓖麻种子在线实时分类的检测系统中应用。
- 单位