摘要

为提高煤层瓦斯含量预测的精准度和效率,提出1种利用遗传算法(GA)和模拟退火算法(SA)混合初始化BP神经网络(BPNN)的瓦斯含量预测新模型(GASA-BPNN模型)。利用灰色关联分析法(GRA)筛选瓦斯含量主控因素并作为GASA-BPNN预测模型的输入。为解决BPNN收敛速度慢和易陷入局部极小陷阱的问题,将GA和具有时变概率突跳性的SA整合为GASA算法协同初始化BPNN的权值和阈值,有效地提高BPNN的参数学习能力。将该模型应用于煤炭生产现场,结果表明:BPNN模型、GA-BPNN模型和GASA-BPNN模型瓦斯含量预测总平均相对误差分别为15.79%,9.03%,5.56%。相比BPNN模型和GA-BPNN模型,GASA-BPNN模型对样本的泛化能力更强,参数训练速度最快并且预测精准度最高。