摘要
为了提高不同工况下的轴承故障诊断准确率,提出了一种基于特征筛选和集成学习的轴承故障诊断方法。考虑到特征向量复杂冗余的问题,结合特征有效性和最大均值差异提出了新的特征评分函数,并在此基础上进一步考虑特征关联度和特征维度,筛选出有利于变工况故障诊断的特征子集。针对单一机器学习模型故障诊断准确率不高的问题,将AdaBoost和Stacking算法相结合构造集成学习故障诊断模型。实验结果表明:筛选出的特征子集在相同分类器下拥有更高的故障诊断准确率;集成学习模型相较于单一模型有更高的故障诊断准确率和鲁棒性。
- 单位