摘要
自然语言生成SQL查询不仅是构建智能数据库查询系统的一个重要组成部分,亦是新型供电轨道交通系统混合时态大数据个性化运维的难点之一。目前利用深度学习模型的方法专注于数据库中单表SQL查询生成,无法解决数据库中多表SQL查询生成。针对这个问题,采用一种基于SQL语句模板填充的方法,将序列生成问题转化为多个分类问题,在训练深度学习模型的过程中充分利用SQL子句不同预测成分之间的依赖关系。在FROM子句的多表JOIN路径生成方面,将其建模为斯坦纳树问题,采用一种全局最优的算法来进行求解。在一个开放的文本生成SQL数据集Spider上对模型和算法进行实验验证,实验结果表明该方法能有效地提升多表SQL查询生成的查询匹配准确率。
- 单位