摘要

针对来自模型结构、参数以及测量数据的不确定性等因素,传统的辨识方法获取的是确定性数学模型的点输出,其鲁棒性差,易受外界干扰.因此,采用区间输出比点输出更易于实际问题的研究.基于复杂系统的不确定性测量数据以及系统参数的不确定性,提出了最优区间回归模型辨识的一种新方法,该方法将逼近误差的L∞范数思想与结构风险最小化理论相结合,建立求解区间模型的最优化问题,应用线性规划独立求解区间模型的上界和下界模型.该方法在保证模型辨识精度的同时,其泛化性能得到进一步提高.实验分析表明,提出的方法对来自噪声以及参数不确定性的数据,可以从区间模型的辨识精度和泛化性能之间取其平衡.