提出了一种改进的A-KAZE算法,利用非线性扩散滤波策略改善了传统高斯核函数构建尺度空间的不足,在实现局部自适应滤除细节的同时保留了目标的边界,且检测到的特征点具有尺度不变性;结合特征点主方向和改进的BRIEF描述子解决了匹配中旋转不变性的问题,以二进制编码形式缩短了匹配时间,并分别在室内和室外环境下进行特征点匹配实验,与ORB、BRISK等算法进行了比较,结果证明改进的算法结合了A-KAZE与BRIEF算法的优势,实现了高准确率和高效的图像特征点匹配.