摘要
为尽早发现瓦斯和煤尘爆炸事故,提出了基于声音特征的煤矿瓦斯和煤尘爆炸的识别方法:利用矿用拾音器实时采集监控区域声音,通过双树复小波变换,提取分解分量的能量熵比值,构成声音信号的特征量,带入极限学习机(ELM)建立识别模型.通过特征提取试验得到:瓦斯和煤尘爆炸声音的各分量能量熵比值跨度起伏小,整体稳定;煤矿井下其余声音的能量熵比值跨度起伏大.采用ELM模型参数进行试验得到:随着隐含层神经个数的增加,ELM分类器的训练精度不断提升,分类器的误差不断降低,当隐含层神经元个数为20个时,ELM网络的训练精度趋于稳定.识别结果表明:识别模型对训练样本的识别率稳定在98.89%,模型平均识别率为93.5%,能够满足煤矿安全生产和应急救援需求.
- 单位