摘要

作为计算机视觉和图像处理研究领域中的经典课题,行人检测技术在智能驾驶、视频监控等领域中具有广泛的应用空间。然而,面对一些复杂的环境和情况,如阴雨、雾霾、被遮挡、照明度变化、目标尺度差异大等,常见的基于可见光或红外图像的行人检测方法的效果尚不尽如人意,无论是在检测准确率还是检测速度上。该文分析并抓住可见光和红外检测系统中行人特征差异较大,但在不同环境中又各有优势的特点,并结合多尺度特征提取方法,提出一种适用于多样复杂环境下多尺度行人实时检测的方法——融合行人检测网络(FPDNet)。该网络主要由特征提取骨干网络、多尺度检测和信息决策融合3个部分构成,可自适应提取可见光或红外背景下的多尺度行人。实验结果证明,该检测网络在多种复杂视觉环境下都具有较好的适应能力,在检测准确性和检测速度上均能满足实际应用的需求。