摘要
针对气象降水数据质量控制难度大,准确性低等问题,提出了基于多要素协助的气象降水数据质量控制方法,使用福州市区域站逐小时数据,分析降水数据的单站要素相关性和邻近站点的降水空间相关性,使用集成学习算法XGBoost(极度梯度提升算法)训练模型,综合考虑查全率和查准率选取异常判断的阈值,最终形成降水异常检测模型,并与多种质控方法进行结果比较。结果表明:(1)单站要素之间有弱相关性,邻近站点的降水数据相关性与空间分布有关,具有强相关性。(2)与传统的变化率判断法,单站单要素方法,单站多要素方法进行结果比较,该方法可以明显区分出异常降水值,其准确性高效果好。(3)该方法泛化能力更好,总体性能优于传统的变化率判断法。
-
单位福建省气象信息中心; 福建省气象科学研究所