摘要

在水电机组状态监测与故障诊断中,轴心轨迹是反映机组运行状态的重要特征。提出了将图形改进不变矩算法与概率神经网络相结合的方法,运用改进不变矩算法对水电机组几种不同运行状态下的转子轴心轨迹进行特征提取,得到相应的特征矩向量,构建概率神经网络进行训练分类,并结合电站实测数据进行了验证。结果表明,该特征提取与分类方法简单稳定,对不同形状的轴心轨迹具有较高的区分度和较好的识别率,可以为水电机组故障诊断提供有效依据。