摘要
为实现中英文民航陆空通话语音识别,提出一种基于深度学习的跨语种民航陆空通话语音识别方法。基于共享隐层的卷积深度神经网络(CDNN)建立一个跨语种声学模型;将中文音素和英文音素(CMU)融合用于构建混合语言模型;在此基础上将CMU标准英文音素映射为TIMIT标准英文音素重构语言模型用于识别;为了缩短训练和解码的时间,在提取特征阶段加入低帧率。实验结果表明,卷积深度神经网络声学模型可较好地应用于民航陆空通话领域;音素映射方法能够进一步提高识别性能;加入低帧率后有效缩短了训练时间且使词错误率下降到4.28%。
- 单位