摘要

针对磨削加工中材料去除率(MRR)在线检测困难这一问题,构建材料去除率的预测模型显得尤为重要。考虑到单独运用BP神经网络不仅存在收敛速度较慢,而且容易坠入局部最优解等问题,故建立了遗传算法与BP神经网络相结合的模型来对给定的超声频率、砂轮速度、工件速度、磨削深度等工艺参数对材料去除率(MRR)进行预测。首先运用遗传算法的全局搜寻作用来对BP神经网络的最初权值以及阈值进行优化,而后运用L-M优化算法对网络进行多次训练,利用训练好的BP神经网络模型来对输出进行预测。结果表明:遗传算法与BP神经网络相结合的模型比单独使用BP神经网络模型预测效果要好,能够提高材料去除率的预测精度和收敛速度。

全文