摘要
模糊熵是衡量时间序列复杂性的非线性动力学分析方法,也是提取齿轮箱非线性故障特征的有效工具。然而模糊熵只对单个时间序列进行复杂性测量,忽略了两个不同时间序列之间模式的相似性。为充分利用振动信号间的丰富信息,将能够有效衡量两个时间序列同步性、相似性和互预测性的交叉熵理论引入到行星齿轮箱故障诊断中。针对单一尺度的熵值不能完整反映序列间模式复杂性问题,通过复合粗粒化的方式对时间序列进行多尺度分析,提出了衡量两通道时间序列相似性与互预测性的复合多尺度交叉模糊熵方法。在此基础上,提出了一种基于复合多尺度交叉模糊熵和萤火虫优化支持向量机的行星齿轮箱故障诊断方法。最后,将所提的故障诊断方法应用于行星齿轮箱试验数据分析,并与现有方法进行了对比,结果表明所提方法能够有效提取故障特征,并且在故障类型诊断方面有更高的识别率。
- 单位