摘要
综合能源系统中多种负荷之间可能存在复杂的、较强的相互耦合关系。相对于对各类负荷进行单一独立的预测,直接开展多元负荷预测能够进一步挖掘负荷之间的内在联系,提高预测准确度。该文提出一种基于ResNet-LSTM网络和注意力机制的多任务学习模型,用于拟合多能负荷之间的空间耦合关系和时间耦合关系。首先,采用多层ResNet作为多能负荷数据的特征提取单元,挖掘多能之间的空间耦合交互特征;然后,通过双向长短时记忆网络残差结构进一步挖掘多能负荷数据的时序特征;接着,使用注意力机制实现多任务对于共享特征不同程度的关注,体现不同子任务对共享特征的差异化选择,实现多元负荷的联合预测;最后,结合亚利桑那州立大学CampusMetabolism系统的多能负荷数据,与其他预测模型进行对比分析,结果表明所提出的多元负荷预测方法具有更高的预测精度。
-
单位东南大学; 国电南瑞科技股份有限公司; 国网电力科学研究院