摘要
为了提高工业热轧带钢表面缺陷检测的检测精度,将深度学习研究领域的前沿技术应用于带钢表面缺陷检测.提出了一种以Swin Transformer作为骨干特征提取网络,级联多阈值结构作为输出层的热轧带钢表面缺陷检测算法.将Transformer结构应用于带钢表面缺陷检测领域,与单纯基于卷积网络的深度学习目标检测算法相比,能够达到更加精确的检测效果.首先,使用Swin Transformer作为骨干特征提取网络代替常规的残差网络结构,增强特征网络对隐含在图像中的深层语义信息的摄取能力.其次设计多级联检测结构,设置逐级的IoU阈值,实现检测精度与阈值提升的权衡.最后使用柔性非极大值抑制(Soft-NMS)、FP16混合精度训练和SGD优化器等训练策略加速模型收敛和提升模型性能.实验结果表明:本文算法在工业热轧带钢数据集(NEU-DET)上相较于YOLOv3、YOLOF、DeformDetr、SSD512和SSDLit等深度学习算法都有更好的检测效果,在裂纹(crazing, Cr)、夹杂(inclusion, In)、斑块(patches, Pa)、麻点(pitted surface, PS)、压入氧化铁皮(rolled-inscale, RS)、以及划痕(scratches, Sc)等表面缺陷检测中训练速度和检测精度都有显著的提升,漏检率显著降低.
- 单位