摘要

针对现有人脸识别模型无法从戴口罩人脸中有效提取区域特征问题,提出融合双重注意力机制的戴口罩人脸识别模型。首先将自建的戴口罩人脸图像作为输入数据,以ResNet50为基准网络,向残差块中引入协调注意力与分割注意力机制。其中协调注意力用于减少口罩区域特征提取,降低口罩区域特征干扰;分割注意力用于细粒度提取非口罩区域特征,从关键部位提取更多特征。然后使用ArcFace分类函数优化分类边界,再结合交叉熵损失函数作为约束,实现戴口罩人脸精细识别。实验结果表明,本文模型在测试集取得95.2%的识别准确率,与ResNet50、AttentionNet模型相比,识别准确率分别提高1个百分点、1.5个百分点。