摘要

随着信息技术的飞速发展,智慧政务的建设在中国如火如荼地展开。为了更好地服务社会,获取舆论的情感倾向变得至关重要。然而,由于媒体数据的多样性,例如讨论话题、文本正文、正文回复以及文本字数限制等原因,人们不仅要对文本正文进行分析,还必须对文本回复、讨论话题等多样文本信息,以及诸如表情符号、社交关系等因素进行建模。遗憾的是,很少有研究工作针对推文文本的回复及多媒体信息进行建模。本文针对推文正文回复、话题以及多媒体信息,提出一种新的双向长短时记忆网络CBi-LSTM (Content Bi-LSTM)对舆论进行情感分析。实验表明,文本信息和多媒体信息的融合能显著提高情感分析的准确性。

  • 单位
    南京中兴新软件有限责任公司