摘要

利用X射线影像进行胸部疾病诊断是一种常用的诊断方法,具有重要的临床诊断价值。随着大规模可用数据集的发布,已经提出了几种利用胸部X射线图像预测常见疾病的方法。然而大多数现有的预测模型大都仅考虑单个视图,忽略了多视图影像对于临床医生诊断的支持作用。此外使用单个模型进行影像特征抽取时,存在有效特征提取不全的问题,进而导致疾病预测准确率较低。为此,提出了一种新的深度相关多级特征融合方法(DFFM),该方法融合不同模型提取的不同视图的视觉特征,以提高疾病预测的准确性。并在目前最大的胸部X射线数据集MIMIC-CXR上进行了验证,实验结果表明,所提方法的area under the receiver operating characteristic curve(AUC)值达0.847,与现有的单视图及简单进行特征拼接的多视图模型相比,AUC值分别提升了12.6个百分点和5.3个百分点,验证了所提多级融合方法的有效性。