摘要
针对当前文本情感分析中神经网络模型训练时间长,上下文信息学习不足的问题,该文提出了一种结合混合神经网络和条件随机场(conditional random fields, CRF)的模型。该模型将神经网络作为语言模型,结合了卷积神经网络(convolutional neural networks, CNN)与双向门控循环单元(bidirectional gated recurrent unit, BiGRU)两种神经网络获得的语义信息和结构特征,采用条件随机场模型作为分类器,计算情感概率分布,进而能够准确地判断情感类别。该文的模型在NLPCC 2014数据集上进行了测试,准确率为91.74%,与其他分类模型相比,可以获得更好的准确性和F值。
- 单位