摘要

为高效地寻找基于决策的黑盒攻击下的对抗样本,提出一种利用模型之间的迁移性提升对抗起点的方法。通过模型之间的迁移性来循环叠加干扰图像,生成初始样本作为新的攻击起点进行边界攻击,实现基于决策的无目标黑盒对抗攻击和有目标黑盒对抗攻击。实验结果表明,无目标攻击节省了23%的查询次数,有目标攻击节省了17%的查询次数,且整个黑盒攻击算法所需时间低于原边界攻击算法所耗费的时间。

全文