传统的谱聚类算法对初始化敏感,针对这个缺陷,引入Canopy算法对样本进行"粗"聚类得到初始聚类中心点,将结果作为K-Means算法的输入,提出了一种基于Canopy和谱聚类融合的聚类算法(Canopy-SC),减少了传统谱聚类算法选择初始中心点的盲目性,并将其用于人脸图像聚类。与传统的谱聚类算法相比,Canopy-SC算法能够得到较好的聚类中心和聚类结果,同时具有更高的聚类精确度。实验结果表明了该算法的有效性和可行性。