摘要
作物识别是提取作物种植结构的基础,利用遥感技术对作物进行监测识别,对优化生产布局、调整农业生产模式有着重要意义。文中选取河套灌区杭锦后旗为研究区域,基于2019年覆盖生长周期的Sentinel-2号卫星影像数据,构建NDVI时间序列数据集,利用Savitzky-Golay(S-G)滤波对NDVI时间序列数据集进行平滑,分析不同作物不同发育期的光谱曲线特征,计算各主要作物识别关键期的光谱阈值,构建基于决策树分层分类的农作物种植面积提取模型,并用验证样本对分类结果进行精度验证。结果表明:利用整个生育期内的NDVI最大合成影像确定植被地表覆盖,NDVI曲线变化区别林地与耕地,逐层提取地物,简便易行;采用S-G滤波重构高质量的NDVI时间序列曲线,研究证明重构后曲线更加平滑符合作物生长趋势;基于Sentinel-2号遥感数据和整个生育期NDVI时序数据,构建分层分类决策树模型,作物分类总体精度达92.1%,Kapppa系数精度达0.857。本研究采用的方法满足遥感观测应用化需求,也为县级区域农作物分类提供重要参考价值。
-
单位内蒙古自治区生态与农业气象中心