摘要
In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrdinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach and symbolic computation. Then based on the extended symmetry, some 3D variable coefficient NLS equations are reduced to other variable coefficient NLS equations or the constant coefficient 3D NLS equation. By using these symmetry transformations, abundant exact solutions of some 3D NLS equations with distributed dispersion, nonlinearity, and gain or loss are obtained from the constant coefficient 3D NLS equation.