摘要
提出一种基于2D先验的3D目标判定算法.首先用轻量级MobileNet网络替换经典SSD的VGG-16网络,构建出MobileNet-SSD目标检测模型;其次,通过改进网络结构,提高模型对小目标的检测能力,并引入Focal Loss函数来解决正负样本不均衡和易分样本占比较高的问题;在相同数据集上,将改进算法与Faster R-CNN、 YOLOv3及MobileNet-SSD进行对比测试,其平均精度mAP分别提高了7.2%、 8.8%和10.6%;最后,通过改进算法获取ROI,利用深度相机将二维ROI转换为ROI点云,并借助直通滤波来判断目标物体是否为真实场景物体,既省去了传统点云识别中的诸多步骤又避免了点云深度学习中三维数据集制作难度较大的问题,在识别速度和识别精度上达到了较好的平衡.
-
单位福州大学; 自动化学院