摘要
【目的】提出一种对多维用户兴趣数据的集成建模方法,并在此基础上研究用户兴趣的谱聚类方法。【方法】以"三只松鼠"微博数据为实例,采用超网络模型对微博内容及用户互动数据进行整合建模,构建互动兴趣度指数,并结合谱聚类算法划分用户群。通过Silhouette Coefficient及Davies-Bouldin方法对实验结果进行评估。【结果】对比三类用户特征向量的最优聚类效果,发现当k取15时,基于话题互动超网络特征向量的聚类DB值达到0.57,效果优于基于互动数据或博文内容的特征向量,类群之间分布更均匀,类群内部也更紧致。【局限】用户特征数据的选取未能全面涵盖。此外,不同维度数据对用户兴趣的影响程度或可进一步探索。【结论】通过对企业微博用户群体分布情况和兴趣特征的分析,提出对应的维护和营销建议,有助于指导企业更好地发现用户兴趣,提升微博营销效果。
- 单位