摘要
铝管作为一种常见的传输零件,对其表面缺陷进行检测是保证其生产质量、运行安全的必要措施。基于机器视觉的铝管表面缺陷检测方法因其检测精度高、速度快等优点,已取代人工检测,成为主流检测方法之一。但由于缺陷样本与背景样本之间分布不平衡,导致分类器决策边界偏移、检测精度下降,限制了其应用范围。针对这一问题,提出一种基于集成自适应欠采样的铝管表面缺陷检测方法,首先利用支持向量描述方法对数据分布间的重叠区域进行识别,其次通过构建样本局部密度关系自适应确定欠采样对象及数量,最终利用随机空间生成技术同时对数据样本空间和特征空间进行优化。试验结果表明,所提方法在铝管表面缺陷数据集上识别精确率达到98.52%,优于其他先进检测方法。
-
单位汽车车身先进设计制造国家重点实验室; 中机生产力促进中心; 湖南大学; 机械科学研究总院